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Abstract

This paper introduces path integrals as a mathematical tool to analytically ex-
plore distributional dynamics of sticky prices in the presence of time-varying
inflation with an implied state- and time-dependent generalized hazard func-
tion. So far, no existing analytical approach can effectively be taken to analyze
such an issue with time-varying growth (for instance, time-varying drift or time-
varying inflation in the case of sticky prices). We explore analytical propagation
of a monetary shock in the presence of time-varying inflation in a sticky-price
economy in its relation to the propagation of a monetary shock in the case
of zero inflation of the sticky-price economy. We also study average speed of
convergence of the transition dynamics of the sticky-price economy using path
integral formulation as well as the propagation of a monetary shock through
the path integral transition density in its relation to the spectral (eigenvalue-
eigenfunction) transition density determined by a theoretical generalization.
Based on all previous theoretical results, we are finally able to study the opti-
mal monetary policy in terms of the optimal timing for achieving the long-term
inflation target set by the central banks, which we show only exists at discrete
infinitely many times T ∗ = nπ

σ
√
2κ

with positive integer n, where σ and κ rep-
resent the cost volatility and the curvature of the corresponding generalized
hazard function, respectively, after the monetary shock.
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1 Introduction

At the beginning of the paper, we must state that the words chosen in the title of
the paper "General Theory" aims to suggest that this paper is to study the dynamics
of sticky prices in an economy with time-varying inflation. In a companion paper
titled "Special Theory of Sticky Prices with Path Integrals", we study the dynamics
of sticky prices in an economy with zero inflation. We adapt this "special-general"
theory tradition from the famous "special-general" theory of relativity proposed by
Albert Einstein in which the special theory of relativity applies when the gravity is
not considered, while the general theory of relativity applies when the gravity cannot
be ignored. In other words, we analogously compare the (time-varying) inflation in
our sticky-price framework to the gravity in relativity theory.

The existing literature falls short of rigorous academic work on the dynamics (i.e.,
the more general dynamical theory as opposed to stationary theory) of sticky prices
with generalized hazard functions and thus desperately needs a groundbreaking work,
for instance, on the distributional dynamics of sticky prices with a more general state-
and time-dependent generalized hazard functions in the presence of time-varying in-
flation, so that such an unfortunate gap between the stationary theory of sticky prices
and a more general dynamical theory of sticky prices with generalized hazard func-
tions can be finally bridged. The most recent work from Alvarez and Lippi (2022) and
Alvarez, Lippi, and Oskolkov (2022) neglects studying the distributional dynamics of
sticky prices in the presence of time-varying inflation with an implied state- and time-
dependent generalized hazard function. Instead, their studies mainly focus on either
zero inflation case or the small constant inflation which can be approximated pretty
well through the zero inflation case in terms of output impulse response following a
monetary shock, which implies that the generalized hazard functions used in Alvarez
and Lippi (2022) and Alvarez, Lippi, and Oskolkov (2022) are all state-dependent
only.

The two main distinctions between macroeconomics of sticky prices in the presence
of time-varying inflation and macroeconomics of sticky prices in the case of zero infla-
tion as studied in Alvarez and Lippi (2022) and Alvarez, Lippi, and Oskolkov (2022)
are listed as follows. First, in the case of sticky prices in the presence of time-varying
inflation with generalized hazard function, the implied generalized hazard function
(i.e., rate of price adjustment) is both state- and time-dependent, while in the case of
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sticky prices with zero inflation, the implied generalized hazard function (i.e., rate of
price adjustment) is just state-dependent. Second, in the former case of sticky prices
in the presence of time-varying inflation with an implied state- and time-dependent
generalized hazard function, firm’s reinjection into the optimal return points (i.e., the
points that maximize the firm’s profits) right after the price adjustment has to be
taken into account. While in the latter case of sticky prices with zero inflation with
an implied state-dependent generalized hazard function, firm’s reinjection right after
the price adjustment can be ignored, because in this case the output impulse response
with firm’s reinjection and the output impulse response without firm’s reinjection are
equivalent to each other.

Figuring out how to incorporate firm’s reinjection after price adjustment in the
context of sticky prices with time-varying inflation and an implied state- and time-
dependent generalized hazard function turns out to be a challenging task and no ex-
isting work in literature has been able to address that appropriately. The eigenvalue-
eigenfunction decomposition approach used in Alvarez and Lippi (2022) and Alvarez,
Lippi, and Oskolkov (2022) turns out to be unfit to deal with distributional dynamics
of sticky prices in the presence of time-varying inflation with an implied state- and
time-dependent generalized hazard function, because it is mathematically impossi-
ble, by the ordinary KFE formulation, to separate eigenvalues from eigenfunctions
for both Kolmogorov Forward Equation (KFE) and Kolmogorov Backward Equation
(KBE) which are both partial differential equations commonly used to analytically
characterize transition dynamics of any state variable in macroeconomics. On the
other hand, the Laplace transform approach used in Gabaix, Lasry, Lions, and Moll
(2016) to study the dynamics of (top) inequality is unable to analytically address the
state-dependent generalized hazard function which is a part of the partial differential
equation, although Laplace transform can deal with the time-varying drift analyti-
cally in the partial differential equation. Overall speaking, we can see that eigenvalue-
eigenfunction decomposition approach is unable to analytically address time-varying
drift but can deal with the state-dependent generalized hazard function. By con-
trast, Laplace transform approach is unable to analytically address state-dependent
generalized hazard function but can deal with the time-varying drift. Hence, nei-
ther eigenvalue-eigenfunction decomposition nor Laplace transform as a technical
approach can be directly used to fully explore a case of macroeconomic model with
both time-varying drift and an implied state- and time-dependent generalized hazard
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function.
Regarding our approach used for the analysis of the paper, our method of path

integral formulation has its wide range of applications in macroeconomics far beyond
the sticky-price models. For instance, path integral formulation also can help solve
the aggregate dynamics in lumpy economies with time-dependent growth of aggre-
gate productivity of the economy, which can be seen as a generalization of Baley and
Blanco (2021). A time-dependent growth of aggregate productivity of the economy
can be viewed and modeled as an important driving force for any economy that expe-
riences a transition following an aggregate shock from its initial steady state to a new
steady state which may or may not be the same as the original steady state of the
economy. It is my hope that both our framework of the dynamics of sticky prices with
generalized hazard functions by path integral formulation and the technical approach
itself (i.e., path integrals) used to conduct the analysis will shed some light on the
future works in the related areas. Indeed, the most exciting aspect of the framework
of this paper is that it can be easily extended to study the transition dynamics of a
wide range of macroeconomic models associated with optimal stopping property char-
acterized by generalized hazard functions with or without time-varying growth (i.e.,
whether it is time-independent or time-varying productivity in lumpy investment,
time-independent or time-varying inflation in sticky price, and time-independent or
time-varying average return in illiquid assets and so forth). From this perspective,
the macroeconomic framework and the mathematical technique itself that this paper
helps to lay out encompass macroeconomics with regard to their powerful capability
to analyze the various macroeconomic topics outlined above.

We make several contributions into the existing literature. First, by path integral
formulation, we figure out the analytical path integral transition density of price gap
and hence the analytical marginal impulse response of output following a monetary
shock in the presence of time-varying inflation of a sticky-price economy with an
implied state- and time-dependent generalized hazard function especially in the case
of considering firm’s reinjections. Second, we explore analytical propagation of a
monetary shock in the presence of time-varying inflation in a sticky-price economy in
its relation to the propagation of a monetary shock in the case of zero inflation of the
sticky-price economy by path integral formulation. Third, we study average speed
of convergence of the transition dynamics of the sticky-price economy using path
integral formulation as well as the propagation of a monetary shock through the path
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integral transition density in its relation to the (spectral) eigenvalue-eigenfunction
transition density by a theoretical generalization of path integral transition density in
its relation to its corresponding eigenvalue-eigenfunction decomposition form in the
presence of time-varying inflation. Finally, given all previous three contributions, we
are able to study, in the context of sticky-price economy with time-varying inflation,
the optimal monetary policy in terms of its optimal timing for achieving its long-term
targeted inflation goal. We find that there only exists infinitely many such optimal
times T ∗ = nπ

σ
√
2κ

that are discrete after the monetary shock, where n = 1, 2, 3, ..., σ
is the cost volatility and κ is the curvature of the generalized hazard function, such
that if the inflation target can be achieved at those discrete times T ∗ = nπ

σ
√
2κ

after
the monetary shock then the monetary policy is said to be optimal.

Setup. The uncontrolled stochastic price (gap) process, after the monetary shock,
for the firm is given by

dx(t) = µ(t)dt+ σdW (t). (1)

By uncontrolled price process, we mean this is the price (gap) process in the
absence of price adjustment(s) which only happen(s) at the stopping time(s), τ(s).
Here, x(t) is our idiosyncratic state which is called price gap measuring the difference
of log-transformed price currently charged by the firm and the optimal price that
maximizes firm’s profit. In this paper, we assume x(t) ∈ (−∞,∞). Note that the
optimal price is proportional to the cost of the firm, and therefore, the size of the
fluctuation of the uncontrolled process is actually only dependent on the cost of the
firm that comes from two components: inflation −µ(t) and the size of the volatility
of the cost σ.

The setup for firm’s problem with zero inflation is a quite standard economic
environment which has been extensively studied by Nakamura and Steinsson (2010),
Woodford (2009), Costain and Nakov (2011), Caballero and Engel (1999), Alvarez and
Lippi (2022), Alvarez, Lippi, and Oskolkov (2022), Caplin and Spulber (1987), Caplin
and Leahy (1991), and Bils and Klenow (2004). When it comes to price adjustment
at stopping time τ , the firm first exits the distribution at the rate of price adjustment
given by the generalized hazard function and then re-enters the distribution or is said
to be reinjected into the distribution at the optimal return point x∗ that maximizes
firm’s profit and, as a result, the price gap x becomes zero for those firms that have
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just reset their prices. We will show that, in the presence of time-varying inflation and
sticky prices with an implied state- and time-dependent generalized hazard function,
the transition dynamics of the price gap following a monetary shock with reinjections
of the firms is not equivalent to the transition dynamics of the price gap without
considering reinjections of the firms. Therefore, we must consider the reinjection of
the firm in the presence of time-varying inflation. That is, in the presence of time-
varying inflation, we must keep track of all firms even after the stopping time τ at
which they reset their prices.

This paper uses generalized hazard functions Λ(x, t) to characterize sticky-price
features. Generalized hazard functions were originally developed by Caballero and
Engel (1993a) and Caballero and Engel (1993b), Dotsey, King, and Wolman (1999)
and further studied by Caballero and Engel (1999), Woodford (2009) and Costain
and Nakov (2011). Generalized hazard functions have also been recently studied
by Alvarez and Lippi (2022) and Alvarez, Lippi, and Oskolkov (2022). In general,
generalized hazard function Λ(x, t) is a function: (x; t) → R+ ∪ {0}, that maps the
idiosyncratic state, i.e., the price gap x, to the rate of the price adjustment over time.
Clearly, it requires Λ(x∗(t), t) = 0 because the optimal price point x∗(t) closes up the
price gap, i.e., price gap x = 0 at x∗. Since zero price gap contributes zero incentive for
the firm to change its price, it follows that the rate of price adjustment Λ(x, t) is zero
at x = x∗. In particular, when µ(t) = 0 as in Alvarez and Lippi (2022) and Alvarez,
Lippi, and Oskolkov (2022), the generalized hazard function is only a function of x,
i.e., Λ(x, t) = Λ(x) with zero inflation and optimal return point in the case of zero
inflation is x∗ = 0. However, when inflation is time-varying, the generalized hazard
function Λ(x, t) is a function of both x and t and the optimal return point x∗(t) in
the presence of time-varying inflation is no longer zero and should be time-dependent
as well.

2 The KFE-based differential operator approach and

path integral transition density

The KFE formulation with time-varying inflation and the corresponding eigenvalue-
eigenfunction decomposition can be better understood by a differential operator A.
We will technically discuss in this subsection why the traditional KFE-based dif-
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ferential operator approach would fail in analytically dealing with such a case with
time-varying inflation µ(t). To do that, we first define a differential operator asso-
ciated with the corresponding KFE (i.e., the transition matrix corresponding to the
KFE) , At, as

Atu = µ(t)ux +
σ2

2
uxx − Λ(x, t)u (2)

and whose adjoint is given by

A∗
tp = −µ(t)px +

σ2

2
pxx − Λ(x, t)p. (3)

Obviously, At ̸= A∗
t and hence the differential operators in the case of general

theory of sticky prices with time-varying inflation, At and A∗
t , are not self-adjoint and

therefore the eigenvalues of both transition matrices At and A∗
t can be complex. So,

in the general theory of sticky prices with time-varying inflation, we must transform
operator At which is not self-adjoint into a self-adjoint operator Bt before we can
proceed to conduct any meaningful analysis. In fact, the differential operators At

and Bt are closely related and can be easily transformed between one and another.
For instance, if we let

Btv =
σ2

2
vxx −

[
Λ(x, t) +

1

2

µ2(t)

σ2

]
v, (4)

such that the p = ve−
µ(t)

σ2 x, then the differential operator At which is not self-adjoint
can be completely transformed into the self-adjoint differential operator (i.e., self-
adjoint transition matrix) Bt. That is, the KFE without the source term

pt = A∗
tp (5)

is equivalent to the KFE

vt = Btv, (6)

where p = ve−
µ(t)

σ2 x.
Note that here comes a problem regarding the eigenvalues λ and the corresponding

eigenfunctions (i.e., the eigenvectors) ϕ of transition matrix Bt with the standard
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spectral decomposition approach. We know that (by definition of the eigenvalues and
eigenvectors of a matrix in matrix algebra) the eigenvalues and eigenfunctions are
typically determined by

Btϕ = λϕ. (7)

However, here, due to the fact that we have the time-dependent differential op-
erator (i.e., time-dependent transition matrix) Bt instead of the time-independent
differential operator or transition matrix B as suggested by equation (11), the eigen-
values and the corresponding eigenfunctions of the transition matrix Bt are no longer
separable. Therefore, in the presence of time-varying inflation µ(t), the equation (14)
which determines the eigenvalues and the corresponding eigenfunctions of transition
matrix Bt cannot be derived from its previous equation (13). This explains the reason
why the KFE-based traditional differential operator approach fails in analytically de-
livering any theoretical eigenvalue-eigenfunction decomposition result in the presence
of time-varying inflation. We see the key reason is because the transition matrix Bt

is time-dependent in a sticky-price economy characterized by a generalized hazard
function with time-varying inflation. As a result, we need to turn our focus to some-
where else to seek an useful analytical tool to help us to overcome this difficulty. It
turns out that the path integral transition density of sticky price which is not in the
form of eigenvalue-eigenfunction decomposition is our desired solution that can help
us overcome this difficulty. This paper is mainly about this path integral transition
density in the presence of time-varying inflation and how to use it in our further
analysis.

More importantly, let us take a moment to think about what the time-dependent
transition matrix Bt means to us and what that means to the resulting transition
density. For simplicity, let us take the two-state Markov chain in discrete time as
an example to investigate how the time-dependent transition matrix affects its cor-
responding transition density, because having a good understanding of it is key to
this paper. In a standard first-year macro class (and very much likely to be among
the very first several classes of the first semester), we have been taught that the the
standard transition matrix in the case of two-state Markov chain in discrete time Π is
independent of time, meaning the standard model assumes that the transition matrix
in the case of two-state Markov chain is time-independent. And that is why there
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is typically no need to put a subscript t with the transition matrix Π in a standard
model. However, once we deviate a little bit from the standard two-state Markov
chain, we find that in reality it is very likely that the transition matrix Πt is time-
dependent, just like the time-dependent transition matrix Bt in our model discussed
above.

Now, we want to ask, in the case of the two-state Markov chain in discrete time,
if the (2 × 2) transition matrix Πt is time-dependent, then what does that mean to
the resulting transition density of the two-state Markov process relative to the case
of time-independent two-state transition matrix Π ? If we understand the difference
here in the two-state Markov process, we will understand our model regarding time-
dependent transition matrix Bt versus time-independent transition matrix B as well,
because they are actually the same thing. Given the initial stationary distribution of
the two-state Markov process, π0, we can express the time evolution of the density
of the two states as πt = Πtπ0 in the case of time-independent two-state transition
matrix Π. But when the two-state transition matrix becomes time-dependent, i.e.,
from time 0 to time τ the transition matrix is Π, and from time τ to time t the
corresponding transition matrix is Ω, where Π ̸= Ω and here all times are discrete
non-negative integers, the resulting time evolution of the density in this latter case is
written as πt = 1{t≤τ}Π

τπ0 + 1{t>τ}Ω
t−τΠτπ0.

Now, in terms of the transition density in this two-state Markov process, we know
that the transition density is given by the row elements of the two-state (2× 2) tran-
sition matrix of Π from time 0 to τ and transition matrix of Ω from time τ to t. For
example, the vector consisting of first-row elements of transition matrix Π is the tran-
sition density of this two-state Markov process which is conditional on the first state
in time t ∈ [0, τ ], Π(st+1 ∈ {1, 2}|st = 1). Similarly, the vector consisting of first-row
elements of transition matrix Ω is the transition density of the two-state Markov pro-
cess which is conditional on the first state in time t ∈ (τ,∞), Ω(st+1 ∈ {1, 2}|st = 1).
We therefore find out that depending on the time, there exists two different transition
density functions which are both conditional on the first state, as discussed above,
which explains why there does not exist eigenvalue-eigenfunction decomposition in
such a time-dependent transition matrix case, because for eigenvalue-eigenfunction
decomposition to be possible the transition density function has to be unique for
all time t. The same logic applies to our case of time-dependent transition matrix
Bt, since there does not exist a unique transition density function that works for
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all t with time-dependent transition matrix Bt, it follows that there does not exist
eigenvalue-eigenfunction decomposition of the time-dependent transition matrix Bt.

Path integral transition density. Based on the discussions above, it naturally
comes down to the question of how could the path integral transition density help ?
The path integral transition density can help in two ways. First, we will show that the
path integral transition density of sticky price does not take eigenvalue-eigenfunction
form and hence the path integral transition density of price gap can be obtained even
with time-dependent transition matrix Bt. Second, we will also show that if we assume
that the time-dependent transition matrix Bt only exists between time 0 and time T

with time-independent transition matrix B at the two endpoints t = 0 and t = T ,
then it will turn out that the path integral transition density of price gap going from
x at time 0 to y at time T implies the (generalized) eigenvalue-eigenfunction form.
This assumption works especially well for the monetary policy. For example, consider
a case where the time-varying inflation µ(t) only exists between time 0 and time T

with zero inflation at the two endpoints t = 0 and t = T . That is, µ(0) = µ(T ) = 0

implies the time-independent transition matrix B at the two endpoints t = 0 and
t = T . Here, we can interpret time t = 0 as the initial steady state with zero inflation
and time t = T as the time at which the central banks achieve the long-term inflation
target goal. For simplicity, we assume central banks’ long-term inflation target is
zero inflation. Then, studying the propagation of a monetary shock at time t = T is
important for the central banks. Given the assumptions, we have

KBt(y|x) =
∞∑
j=1

∞∑
i=1

λji(T )ϕj(y)ϕi(x), (8)

where on the left hand side KBt(y|x) is the path integral transition density of price
gap going from x at time 0 to y at time T and on the right hand side∑∞

j=1

∑∞
i=1 λji(T )ϕj(y)ϕi(x) is its implied corresponding transition density of price

gap of the (generalized) eigenvalue-eigenfunction decomposition form. Note that, un-
like in the case of time-independent transition matrix B in which there does exist the
standard transition density of the eigenvalue-eigenfunction decomposition form im-
plied by the path integral transition density, in the case of time-dependent transition
matrix Bt there does not exist the standard transition density of the eigenvalue-
eigenfunction form implied by the path integral transition density, but rather we
call it (generalized) eigenvalue-eigenfunction decomposition form, which is different

10



from the standard eigenvalue-eigenfunction decomposition form in the case of time-
independent transition matrix B.

The main contribution of the paper. We logically discuss the contribution
of this paper here. The main contribution of the paper starts with an observation
that the path integral transition density of sticky-price gap in the presence of time-
varying inflation, KBt(y|x) =

∑∞
j=1

∑∞
i=1 λji(T )ϕj(y)ϕi(x), is asymmetric, while its

corresponding path integral transition density of sticky-price gap in the absence of
time-varying inflation (i.e., with zero inflation), (see the companion paper,i.e., the
special theory), KB(y|x) =

∑∞
j=1 e

−λjtϕj(y)ϕj(x), is symmetric. This can be eas-
ily seen by noticing that KBt(y|x) ̸= KBt(x|y) but KB(y|x) = KB(x|y) from the
eigenvalue-eigenfunction form implied by the path integral transition density above.
That is,

∑∞
j=1

∑∞
i=1 λji(T )ϕj(y)ϕi(x) ̸=

∑∞
j=1

∑∞
i=1 λji(T )ϕj(x)ϕi(y) as long as j ̸= i,

but
∑∞

j=1 e
−λjtϕj(y)ϕj(x) =

∑∞
j=1 e

−λjtϕj(x)ϕj(y).
Hence, based on this observation, we further learn that one of the most impli-

cations of this asymmetric transition density KBt(y|x) with time-varying inflation
vs. symmetric transition density KB(y|x) with zero inflation is that the asymmetric
transition density of sticky-price gap with time-varying inflation causes the average
speed of the convergence of the marginal output impulse response in the presence of
time-varying inflation to be faster than that of the marginal output impulse response
in the absence of time-varying inflation (i.e., with zero inflation). Or equivalently, the
asymmetric transition density of sticky-price gap with time-varying inflation causes
a larger amplification effect for the marginal output impulse response in the presence
of time-varying inflation than that for the marginal output impulse response in the
absence of time-varying inflation (i.e., with zero inflation), which is not good for the
sticky-price economy with time-varying inflation in transition. Thus, the goal will
be to make the transition density of sticky-price gap in the presence of time-varying
inflation as symmetric as possible, so that the amplification effect could be dampened.

Next, we theoretically argue for an optimal monetary policy that could be used
by central banks to correct this asymmetric property of the transition density of
sticky-price gap in the presence of time-varying inflation. Here comes a key point,
which is that if we can take a closer second look at the asymmetric transition density
KBt(y|x) in its eigenvalue-eigenfunction form and the symmetric transition density
KB(y|x) in its eigenvalue-eigenfunction form above, we can easily find that the asym-
metry of KBt(y|x) only occurs when the j ̸= i with the time-varying inflation. If
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j = i, then the asymmetry will be transformed into symmetry for the KBt(y|x) with
time-varying inflation. That is, if j = i, then the transition density of sticky-price gap
with time-varying inflation KBt(y|x) becomes symmetric and takes the form of linear
transformation of the symmetric transition density of sticky-price gap with zero infla-
tion KB(y|x), i.e., if j = i, then KBt(y|x) =

∑∞
j=1 λjj(T )ϕj(y)ϕj(x) = L

(
KB(y|x)

)
=

L
(∑∞

j=1 e
−λjtϕj(y)ϕj(x)

)
for all t = T , where L(·) means linear transformation.

Finally, we give suggestions to the central banks in terms of how to practically
achieve j = i so that the amplification effect due to the asymmetry can be dampened.
To achieve this goal, the central banks must use their monetary policy as the monetary
tool to set discrete times T ∗ = nπ

σ
√
2κ

at which the long-term zero inflation target is
achieved after the monetary shock. Note here for simplicity we assume the long-term
inflation target for central banks is zero inflation. And here σ is the volatility of the
cost, κ is the curvature of the generalized hazard function, and n = 1, 2, 3, ....

The organization of the paper. In order to achieve those goals mentioned
as the contribution of the paper, the paper is organized as follows. We discuss the
background knowledge that is necessary for us to better understand this paper in
section 1 and section 3 in terms of the setup, literature, the monetary shock in our
model and the impulse response function with section 2 as an exception. We view
section 2 is a very important section for this paper in a way that helps relate the
exiting literature to the content of this paper. We also outline an analytical method
for how to incorporate the firm’s reinjection into the path integral transition density
of sticky-price gap with time-varying inflation in section 2.

We formally introduce path integral formulation in the context of the sticky prices
with generalized hazard functions in section 4 and finish this section with an example
to show what the resulting path integral transition density of sticky-price gap in the
case of zero inflation looks like in terms of its symmetry and the functional form.
In section 5, we study the path integral transition density of sticky-price gap in the
presence of time-varying inflation in both cases with or without firm’s reinjection. We
show the path integral transition density of sticky-price gap in the presence of time-
varying inflation with firm’s reinjection is totally distinct from that without firm’s
reinjection in section 5.

Starting section 6, our goal is on the optimal monetary policy analysis. We estab-
lish a relation between the marginal impulse response in the case of zero inflation and
the marginal output impulse response in the presence of time-varying inflation with
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firm’s reinjection in section 6.1. We study under what circumstance the path integral
transition density of sticky-price gap in the presence of time-varying inflation becomes
symmetric and takes linear transformation of the path integral transition density of
sticky-price gap with zero inflation in section 6.2. In section 7, we generalize the
path integral transition density of sticky-price gap in its relation to the transition
density of sticky-price gap of the form of eigenvalue-eigenfunction decomposition in
the presence of time-varying inflation.

Based on this generalization, we finally are able to re-express the path integral
transition density of sticky-price gap in the presence of time-varying inflation in terms
of the generalized eigenvalue-eigenfunction form and hence also be able to re-express
the marginal output impulse response using the generalized eigenvalue-eigenfunction
form. Importantly, with the help of this generalization, we can clearly see how and
to what extend the optimal monetary policy studied earlier in the paper relates to
the eigenvalue-eigenfunction form. We end our analysis with a set of average speeds
of convergence for the marginal output impulse responses in three scenarios, namely,
the zero inflation scenario, the time-varying inflation scenario with T = T ∗, the time-
varying inflation scenario with T ̸= T ∗ and compare them.

Firms’ reinjections and path integral transition density. We next outline
the analytical steps used to tackle the main challenge of the dynamics of time-varying
inflation and sticky prices with an implied state- and time-dependent generalized
hazard function, which are heavily dependent on the transition density version of the
KFEs. First, we intuitively illustrate why eigenvalue-eigenfunction decomposition
method used in Alvarez and Lippi (2022) could not be applied to the time-varying
inflation case as follows. When the inflation is time-varying, i.e., µ(t) is not zero
anymore but a function of real time t, the KFE formulation of the problem is written
as

∂tp(x, t) = −µ(t)∂xp(x, t) + (σ2/2)∂2
xp(x, t)− Λ(x, t)p(x, t) (9)

if not considering firm’s reinjection. Moreover, if considering firm’s reinjection, the
corresponding version of KFE is given by

∂tp(x, t) = −µ(t)∂xp(x, t) + (σ2/2)∂2
xp(x, t)− Λ(x, t)p(x, t) + Λ(x, t)δ(x(t)− x∗(t)),

(10)
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where the last term Λ(x, t)δ(x(t)−x∗(t)) captures the reinjections of the firms into the
optimal return point x∗(t) at the rate of Λ(x, t) upon price adjustment and therefore
δ(x(t) − x∗(t)) is the Dirac Delta function at x∗(t). For both cases, eigenvalue-
eigenfunction decomposition cannot be applied to the KFE(s) above simply because
the time-varying drift or inflation µ(t) makes it impossible to write the solution to
the KFE with time-varying drift in terms of eigenvalue-eigenfunction decomposition,
(i.e., p(x, t) =

∑∞
j=1 e

λjtϕj(x), where λj and ϕj(x) are eigenvalues and eigenfunctions,
respectively, is impossible for the solution to the KFE with time-varying drift). Now,
since the path integral transition density is a particular type of time evolution of
the density given any arbitrary initial condition at s that does not necessarily have
to be equal to the the initial condition at t = 0 in general, it follows that the path
integral transition density of price gap in the presence of time-varying inflation µ(t)

without considering firm’s reinjection, Kµ(t)(y|x), also satisfies the KFE above; that
is, without considering firm’s reinjection, it is given by

∂tK
µ(t)(y|x) = −µ(t)∂yK

µ(t)(y|x) + (σ2/2)∂2
yK

µ(t)(y|x)− Λ(y, t)Kµ(t)(y|x), (11)

and with firm’s reinjection, the path integral transition density based KFE is corre-
spondingly given by

∂tKµ(t)(y|x) = −µ(t)∂yKµ(t)(y|x) + (σ2/2)∂2
yKµ(t)(y|x)− Λ(y, t)Kµ(t)(y|x)

+ Λ(y, t)δ(y(t)− y∗(t)),
(12)

where Kµ(t)(y|x) denotes the path integral transition density of price gap in the pres-
ence of time-varying inflation with an implied state- and time-dependent generalized
hazard function and with firm’s reinjection. Given the background discussion above,
the analytical steps used to conduct our analysis for transition density of price gap in
the case of sticky prices and time-varying inflation with firm’s reinjection is as follows.
In the first step, we show path integral formulation allows us to analytically obtain
the path integral transition density of price gap in the presence of time-varying in-
flation, Kµ(t)(y|x), a solution to the KFE (11) without considering firm’s reinjection.
In the second step, we show that the path integral transition density of price gap in
the presence of time-varying inflation without firm’s reinjection Kµ(t)(y|x) takes the
multiplicative form of path integral transition density of price gap in the case of zero
inflation, K0(y|x), and some other terms that aim to account for the impact of the
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time-varying inflation µ(t), where K0(y|x) solves

∂tK
0(y|x) = (σ2/2)∂2

yK
0(y|x)− Λ(y)K0(y|x) + Λ(y)δ0(y), (13)

which, as we will show, shares the same solution as the solution to the case without
considering firm’s reinjection in the case of zero inflation, i.e.,

∂tK
0(y|x) = (σ2/2)∂2

yK
0(y|x)− Λ(y)K0(y|x). (14)

In the third step, to transform the path integral transition density of price gap in
the presence of time-varying inflation without firm’s reinjection Kµ(t)(y|x) into the
path integral transition density of price gap in the presence of time-varying inflation
with firm’s reinjection, Kµ(t)(y|x), we just need to replace the K0(y|x) component
in the multiplicative form of Kµ(t)(y|x) with the eigenvalue-eigenfunction transition
density of price gap, i.e., K0(y|x), where τ is the stopping time at which the firm
resets price to the optimal return point y∗(τ) ̸= 0 in the presence of time-varying
inflation and therefore K0(y|x) solves

∂tK0(y|x) = (σ2/2)∂2
yK0(y|x)− Λ(y)K0(y|x) + Λ(y)δ(y∗(τ)). (15)

As a result, we can obtain our desired path integral transition density of price gap
in the presence of time-varying inflation of a sticky-price economy with an implied
state- and time-dependent generalized hazard function and with firm’s reinjection,
Kµ(t)(y|x), by the three steps outlined above.

Stationary distribution. We study the analytical marginal impulse response
of output following a monetary shock. With quadratic generalized hazard function
at time 0 before shock and time-varying inflation arrive, Λ(x) = κx2, we first must
solve for the steady state of the distribution of the price gap with that quadratic
hazard function. Simply note that the time-independent KFE characterizing the
stationary distribution of the price gap with a quadratic hazard function is written
as κx2f(x) = σ2

2
f ′′(x), where f(x) is the stationary distribution of price gap x and σ

is a measure of cost uncertainty of the stationary economy (i.e., the volatility of the
initial steady-state economy). The solution to this time-independent KFE takes the
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following form

f(x) = e−
√

κ/2σ2x2
∞∑
j=0

a2jx
2j

= a0e
−
√

κ/2σ2x2

+ e−
√

κ/2σ2x2
∞∑
j=1

a2jx
2j

(16)

where a0 is a normalization factor and is determined by the normalization of density
f(x) (i.e.,

∫∞
−∞ f(x)dx = 1) and the coefficients a2j are recursively given by

a2j+2 =
4
√

κ/2σ2j +
√

κ/2σ2

(2j + 1)(j + 1)
a2j, (17)

note that all coefficients a2j will be completely determined by normalization factor
a0. We thus can write the output marginal impulse response function as

Y(t) =

∫ ∞

−∞

∫ ∞

−∞
(−y)K0(y|x)f ′(x)dxdy,

where K0(y|x) is the transition density of price gap following a monetary shock in
the case of zero inflation, that is

K0(y|x) =

[ √
2κ

2πσ sinh
√
2κσt

]1/2
e
−

√
2κ

2σ

[
(x2+y2) coshσ

√
2κt−2xy

sinhσ
√
2κt

]
,

and f ′(x) is the derivative of the invariant density of price gap which is given by

f ′(x) = a0(−2)
√

κ/2σ2xe−
√

κ/2σ2x2

+ (−2)
√

κ/2σ2xe−
√

κ/2σ2x2
∞∑
j=1

a2jx
2j

+ e−
√

κ/2σ2x2
∞∑
j=1

(2j)a2jx
2j−1.

3 Monetary shock and impulse response

This paper aims to explore the distributional dynamics of a sticky-price economy
with generalized hazard functions following a monetary shock. In terms of a monetary
shock studied by this paper, we consider a parallel shift in all price gaps. The rationale
is that, under the specific assumptions this paper follows, the parallel shift in the level
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of money supply maps into a parallel shift in nominal wages and thus parallel shift
in all price gaps. When it comes to uncertainty shocks, however, we do not have
the parallel shift in all price gaps anymore. Specifically, with uncertainty shocks, the
dispersion of the initial steady-state distribution of the price gaps will be changed
without a parallel shift in distribution of the price gaps. Furthermore, in a sequence
of uncertainty and monetary shocks, we will have the mixture of both parallel shift
in the price gaps and the changes in the dispersion of the price gaps. Throughout
the paper, we mainly discuss how a monetary shock could drive the distributional
dynamics of a sticky-price economy in the case of time-varying inflation.

A monetary shock. Specifically, when it comes to the distributional dynamics
of the price gap following a monetary shock, we take a similar approach as in Alvarez,
Lippi, and Souganidis (2023); that is, we consider a perturbation ν of the stationary
density of price gap f(x), or equivalently, we define the initial condition of the density
of price gap right after the monetary shock of size δ, f0(x), as

f0(x) = f(x) + δν(x), (18)

where
∫∞
−∞ ν(x)dx = 0.

In the spirit of Alvarez, Lippi, and Souganidis (2023) and in the context of small
monetary shock characterized by the small size of the monetary shock δ (i.e., small δ),
there is a particular perturbation focused by this paper which is the one corresponding
to an unanticipated aggregate nominal shock that changes the nominal costs of all
firms by an amount δ, so that the initial condition for the density of price gap before
any decision is taken is

f0(x) = f(x+ δ), (19)

which is a special case of f0(x) = f(x)+δν(x) where ν(x) = f ′(x), which follows from
the fact that f(x+δ) = f(x)+δf ′(x)+O(δ) implied by Taylor expansion of f(x+δ).
The interpretation of such an initial condition of the density of price gap is that after
the monetary shock of size δ the nominal cost jumps immediately and hence the value
of the price gap x for each firm jumps from x to x − δ. Hence, in this paper, the
signed measure f̂(x) = f(x+δ)−f(x) describing the deviation of the initial condition
of the density of price gap from the stationary density of price gap right after the
monetary shock to the stationary density is given by f̂(x) = δf ′(x) + O(δ). Note
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that the impulse response function is basically the expected value of any variable of
interest computed on this signed measure and that is why this signed measure is an
important component of the impulse response function of any variable of our concern.
For the consideration of the marginal version of the monetary shock, we thus have

∂f̂(x)

∂δ

∣∣∣∣
δ→0

= f ′(x), (20)

which is the version of the signed measure that will be used in the marginal output
impulse response function of this paper.

Impulse response function of output. We use output impulse response func-
tion

Y (t; δ) =

∫ ∞

−∞

∫ ∞

−∞
(−y)qt(y|x)dydF̂ (x), (21)

where F (x) is the corresponding cumulative density and thus the corresponding
marginal version of output impulse response function as δ → 0, M(t), is given by

M(t) =

∫ ∞

−∞

∫ ∞

−∞
(−y)qt(y|x)f ′(x)dxdy, (22)

where qt(y|x) is the transition density of price gap from x at time 0 to y at time t

and −y is due to the fact that output is inversely proportional to output gap.
Related literature. Almost all analytical works in existing literature are only

focused on zero inflation or constant or steady-state inflation. For example, some
results have been given by Alvarez and Lippi (2022) for a simplified problem featuring
symmetry of the firms’ decision (a symmetric p(x, t) density) and lack of drift (i.e.,
zero inflation) in the firm’s state x, assumed to follow a driftless diffusion dx =

σdW where W is a Brownian motion. Symmetry and lack of drift turn out to be
analytically convenient because they give rise to a situation that allows analytical
eigenvalue-eigenfunction decomposition to be a feasible analytical approach to explore
such a simplified case. Also see Taylor (1980), Calvo (1983), Golosov and Lucas
(2007), Nakamura and Steinsson (2010), Caballero and Engel (2007), Midrigan (2011),
Bhattarai and Schoenle (2014), Alvarez and Lippi (2014), and Alvarez and Lippi
(2020).

The adjustment choice formulated as a generalized hazard function is also a popu-
lar idea in literature but the formulation of this paper nests fully both state-dependent
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adjustment and time-dependent adjustment. In existing literature, most works either
study the zero-drift case µ(t) = 0 as mentioned above with a generalized hazard func-
tion Λ(x) which is only state-dependent, see Alvarez and Lippi (2022), and thus yields
a symmetric and stationary environment, or study constant-drift case µ(t) = µ ̸= 0

and thus piece-wise hazard is studied by Baley and Blanco (2021), which in this
case will yield an asymmetric and stationary environment. For both previous cases
in existing literature, there is a steady-state distribution of price gap characterized
by a time-independent KFE. Its characterization is key for (i) studying the propa-
gation of aggregate shocks, i.e., monetary shocks or aggregate productivity shocks,
(ii) deriving sufficient statistics that characterize marginal impulse response func-
tion, and (iii) establishing mappings to the micro-data. Furthermore, the existing
standard analytical approach is enough to analyze both previous cases, whether it
is by eigenvalue-eigenfunction decomposition or Laplace transform method. See Ca-
ballero and Engel (2007), Alvarez, Bihan, and Lippi (2016), Baley and Blanco (2021),
Alexandrov (2020), Hansen and Scheinkman (2009), and Gabaix et al. (2016). The
state dependence has been studied both theoretically and empirically in literature by
Barro (1972), Sheshinski and Weiss (1977), Dixit (1991), Golosov and Lucas (2007),
Fougere, Bihan, and Sevestre (2007), Dias, Marques, and Silva (2007), Eichenbaum,
Jaimovich, and Rebelo (2011), and Gautier and Saout (2015). There are also many pa-
pers with numerical results along this line of work though across durable consumption,
saving portfolios, mortgage refinance, monetary policy with portfolio frictions and in-
vestment, see Eberly (1994), Attanasio (2000), Stokey (2009), Caballero and Engel
(1999), Baley and Blanco (2021), Alvarez, Guiso, and Lippi (2012), Abel, Eberly, and
Panageas (2013), Alvarez, Atkeson, and Edmond (2009), and Silva (2012). However,
the literature lacks its theoretical counterpart. Hence, this paper aims to fill such a
gap.

4 Introduction to path integral formulation with gen-

eralized hazard functions

This section introduces path integrals in the context of sticky prices and generalized
hazard functions to explore the distributional dynamics of the sticky-price economy
following a monetary shock in the case of both zero inflation and time-varying infla-
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tion. The theoretical framework of path integrals outlined in this section generally
works not only for an economy of sticky prices in the case of zero inflation with an
implied state-dependent-only generalized hazard function but also for a sticky-price
economy in the presence of time-varying inflation with an implied state- and time-
dependent generalized hazard function. The only difference between the two cases
is that the generalized hazard function in the former case of zero inflation takes the
form of Λ(x) and the generalized hazard function in the latter case of time-varying
inflation takes the form of Λ(x, t).

The fundamental idea about path integrals (or path integral formulation) for
studying macroeconomic dynamics of sticky prices with generalized hazard functions
following a monetary shock is to analytically obtain the transition density of price
gap x going from xa at time ta to xb at time tb, K(b|a), or simply, the transition
probability that price gap ends up being xb at time tb given it starts with xa at time
ta. Now, imagine the following thought experiment. (Also see page 59 of Feynman
and Hibbs (1965), i.e., the Gaussian Integrals section). First, following a shock, let us
denote a deterministic time path of price gap x from xa at time ta to xb at time tb by
x̄(t) which is the deterministic time path of x based on the principle of least action,
and the actual time path of the price gap x from ta to tb by x(t), where t ∈ [ta, tb].
Then, the actual time path of price gap over the transition period x(t) can be written
as the sum of the deterministic time path x̄(t) of least action and the deviation of the
actual time path x(t) from the deterministic path x̄(t) of least action, namely, y(t),
as

x(t) = x̄(t) + y(t) (23)

that is, instead of defining a point on the path by its distance x(t), we measure
instead the deviation y(t) from the least-action deterministic path x̄(t). Given the
transitional time path from ta to tb, both the actual and the least-action deterministic
time path of price gap from the transition period ta to tb following a shock have the
same initial and terminal locations because they are actually both the transitional
time paths between xa at time ta and xb at time tb (i.e., fixing end points but varying
the path in-between), that is,

x(ta) = x̄(ta) = xa
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and

x(tb) = x̄(tb) = xb,

and therefore, based on x(t) = x̄(t) + y(t), we get

y(ta) = y(tb) = 0,

that is, the deviation of the actual time path of price gap from the least-action
deterministic time path of the price gap at the initial and terminal locations xa and
xb, respectively, are both equal to zero.

In between these end points y(t) can take any form. Since the least-action de-
terministic path x̄(t) is non-random and can always be solvable according to the
principle of least action in which Euler-Lagrange (EL) equation applies, any variation
by a perturbation in the alternative path x(t) is equivalent to the associated variation
in y(t). Thus, in a path integral, the path differential Dx(t) can be replaced by Dy(t),
i.e., Dx(t) = Dy(t), and the path x(t) by x̄(t) + y(t). Here, we use D to denote path
differential rather than the ordinary differential d used in the standard calculus.

In this form, x̄(t) is the least-action deterministic path for the integration which
is analytically given by EL equation. Moreover, the stochastic path y(t) is restricted
to take the value 0 at both end points. This substitution leads to a path integral
independent of end-point positions. See Page 59 of Feynman and Hibbs (1965).
In what follows, we specifically illustrate how to use path integral formulation to
analytically explore the transition dynamics of a sticky-price economy following a
monetary shock for the cases where zero inflation µ(t) = 0 implying state-dependent
generalized hazard function Λ(x) and time-varying inflation µ(t) implying state- and
time-dependent generalized hazard function Λ(x, t) associated with the volatility of
the economy, σ.

It follows from the definition of the path integral formulation Feynman and Hibbs
(1965) that the path integrals, given our economic settings, are formulated by the fol-
lowing integral for the transition density, K(xb, tb;xa, ta) = K(b|a), which represents
the transition density of price gap going from xa at time ta to xb at time tb as

K(b|a) =
∫ xb

xa

e−
1
σ2

∫ tb
ta

L(ẋ,x,τ)dτDx(τ),
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where L(ẋ, x, t) = 1
2
ẋ2(t)+σ2Λ(x, t) is the Lagrangian, or equivalently, it is rewritten

as
K0(b|a) =

∫ xb

xa

e−
1
σ2

∫ tb
ta [

1
2
ẋ2(τ)+σ2Λ(x)]dτDx(τ) (24)

with zero inflation and

Kµ(t)(b|a) = wtb(xb)

∫ xb

xa

e−
1
σ2

∫ tb
ta [

1
2
ẋ2(τ)+σ2Λ(x,τ)]dτDx(τ) (25)

in the presence of time-varying inflation. Here, x(t) denotes the any possible transi-
tional path of price gap x from time ta to time tb. D explicitly refers to the fact that
the integral is taken with respect to all the possible paths of x between xa and xb.

One of the biggest shortcomings of Brownian motion (Weiner) processes based
on which KFE is formulated is that the Brownian stochastic process is not differ-
entiable with respect to time. In Section 5 we show that any Brownian stochastic
process can be equivalently formulated by path integrals by an equivalence of KFE
and path integral formulation in this regard. Here, we aim to show that any path
integral formulated stochastic process which turns out to be an equivalence of Brow-
nian stochastic process by Section 5 turns out to be differentiable with respect to
time. Indeed, an intriguing analytical feature of the path integral formulation is that
it makes x(t) differentiable everywhere with respect to time t, i.e., it makes ẋ(t) a
real continuous function of time t, from xa at time ta to xb at time tb by rewriting
x(t) = x̄(t) + y(t) even with Brownian dx(t), because the deterministic least-action
path x̄(t) determined by EL equation is differentiable everywhere with respect to t

from xa to xb. Meanwhile, the perturbed y(t) with y(ta) = y(tb) = 0, without loss of
generality, can be expressed in terms of Fourier series as

y(t) =
∞∑
n=1

an sin

(
nπ(t− ta)

tb − ta

)
(26)

with which coefficients an are random coefficients. Note that y(t) written in the form
of Fourier series above is a continuously differentiable function of t from xa at time
ta to xb at time tb. As a result,

ẋ(t) = ˙̄x(t) + ẏ(t)

= ˙̄x(t) +
π

tb − ta

∞∑
n=1

nan cos

(
nπ(t− ta)

tb − ta

)
,

(27)
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which is obviously not only a continuous function of t but also differentiable with
respect to t everywhere from xa at time ta to xb at time tb. From the perspective
of making x(t) differentiable with respect to t everywhere from xa at time ta to
xb at time tb through path integral formulation by writing x(t) = x̄(t) + y(t) with
y(ta) = y(tb) = 0 even with Brownian dx(t), we break a ground for any further
analytical exploration of the time path of x(t) which is usually not differentiable
everywhere with respect to t due to the Brownian process followed by dx(t).

Since for both cases of zero inflation and time-varying inflation, the transition den-
sity of price gap K(b|a) can be written in terms of x(t) = x̄(t) + y(t), the transition
density formulations given above can thus be rewritten in terms of the least-action
deterministic path x̄(t) from a to b and the perturbed path y(t) from a to b. Also note
that the path integrals treat the least-action deterministic path x̄(t) as a reference
path or a constant path relative to the perturbed path y(t) where fixing ya = yb = 0,
it follows that the transition density K(b|a) = K(xb, tb;xa, ta) above can be eventu-
ally written in the case of zero inflation with an implied state-dependent generalized
hazard function Λ(x) as

K0(b|a) =
∫ xb

xa

e−
1
σ2

∫ tb
ta [

1
2
ẋ2(τ)+σ2Λ(x)]dτDx(τ)

= e−
1
σ2 S

0[x̄(t)]

∫ 0

0

e−
1
σ2 S

0[y(t)]Dy(t)

(28)

and written in the presence of time-varying inflation with an implied state- and time-
dependent generalized hazard function Λ(x, t) as

Kµ(t)(b|a) = e
µ(tb)

σ2 xb

∫ xb

xa

e−
1
σ2

∫ tb
ta [

1
2
ẋ2(τ)+σ2Λ(x,τ)]dτDx(τ)

= e−
1

2σ2

∫ tb
ta

µ2(t)dte
µ(tb)

σ2 xbe−
1
4κ

∫ tb
ta

f2(t)dt

× e−
1
σ2 S

µ(t)[x̄(t)]

∫ 0

0

e−
1
σ2 S

µ(t)[y(t)]Dy(t),

(29)

where both the integrals above are taken with respect to the perturbed path y(t)

denoted by Dy(t) rather than with respect to the ordinary integral usually denoted
by dy in which y is not a stochastic path but an interval of real numbers. Hence,
in the formulation of path integrals, we see the path integrals taken with respect to
a stochastic (or perturbed) path y(t) as e−

1
σ2 S[x̄(t)]

∫ 0

0
e−

1
σ2 S[y(t)]Dy(t) generally is not

zero, because path integrals restricting two end points at zero just means the two end
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points, i.e., ya and yb, of the stochastic path y(t) are fixed relative to the least-action
deterministic reference path x̄(t). However, if all this is done in the sense of the
ordinary integrals taken with respect to a real-valued interval in which y is any real
number rather than a stochastic path y(t), i.e.,

∫ 0

0
e−

1
σ2 S[y]dy, then the result is always

zero. In the proof of Appendix, we show how exactly the path integrals are performed
with respect to a perturbed path y(t) when fixing two end points of the perturbed
path y(t), ya and yb, relative to the least-action deterministic reference path x̄(t), i.e.,
e−

1
σ2 S[x̄(t)]

∫ 0

0
e−

1
σ2 S[y(t)]Dy(t).

We then can simply utilize the path integral formulation outlined above to analyt-
ically derive the transition density of the price gap in the context of sticky prices with
quadratic generalized hazard function not only in the case of zero inflation but also
in the presence of time-varying inflation. As an example, next proposition gives the
analytical transition density of price gap in the context of sticky prices with quadratic
generalized hazard function in the case of zero inflation.

Proposition 1. The path integral transition density of state variable of price gap
x, K0(xb, tb;xa, ta), or simply K0(b|a), going from xa at time ta to xb at time tb

following a monetary shock that occurs at time t = ta to the sticky-price economy
with an implied quadratic generalized hazard function Λ(x) = κx2 and volatility of the
cost σ is given by

K0(b|a) =

[ √
2κ

2πσ sinh
√
2κσ(tb − ta)

]1/2
e
−

√
2κ

2σ

[
(x2a+x2b) coshσ

√
2κ(tb−ta)−2xaxb

sinhσ
√

2κ(tb−ta)

]
. (30)

Two observations here are worth noting. First, we show in the companion special
theory paper using path integral transition density that with zero inflation the path
integral transition density of sticky-price gap with firm’s reinjection is equivalent to
that without firm’s reinjection. Hence, the transition density of price gap in the case
of zero inflation as in Proposition 1 is the version that works for both cases. Second,
from the path integral transition density of price gap in the case of zero inflation,
K0(b|a), as in Proposition 1, we easily see that K0(b|a) = K0(a|b), meaning the
transition density of sticky-price gap in the case of zero inflation is symmetric. Later
we will see this is no longer the case for the time-varying inflation scenario.
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5 Path integral formulation in the presence of time-

varying inflation

Remember that in the case of zero inflation the generalized hazard function takes the
form of Λ(x) which is only state-dependent, while when it comes to the time-varying
inflation the generalized hazard function will take the functional form of Λ(x, t) which
is both state- and time-dependent. Now, consider a quadratic generalized hazard
function as an example so that it keeps consistent with the first half of the paper. In
the case of zero inflation as discussed in the first half of the paper, the generalized
hazard function Λ(x) = κx2 which is state-dependent functional form, i.e., it is only
dependent on the state variable, namely, the price gap x. By contrast, in the presence
of time-varying inflation µ(t) which is generally a function of time t, the implied
generalized hazard function is a function of both state variable x (i.e., the price gap)
and time t. Furthermore, when it comes to the quadratic state- and time-dependent
generalized hazard function implied by the time-varying inflation, it takes the form

Λ(x, t) = κ

[
x(t) +

f(t)

2κ

]2
. (31)

Note that the state-dependent-only quadratic generalized hazard function in the
case of zero inflation, Λ(x) = κx2, is just a special case of this more general state-
and time-dependent quadratic generalized hazard function in the presence of time-
varying inflation by noticing that Λ(x) = κx2 can be recovered by letting f(t) = 0.
How to determine f(t) via time-varying inflation µ(t) is a question that will be left
for a future work in which the general equilibrium framework will be considered.
Indeed, if the framework is not about general equilibrium as in this paper, there will
be no determination of f(t) via µ(t). The determination of f(t) via time-varying
inflation µ(t) only becomes possible only when the general equilibrium framework of
the same sticky-price model is considered. In other words, once f(t) as a function
of µ(t) is determined in general equilibrium, the time-varying optimal return point
x∗(t) will also be determined in terms of the time-varying inflation by the equation
x∗(t) = −f(t)

2κ
and hence the general equilibrium effect will be generated.

Transition density of price gap without firm’s reinjection in the presence
of time-varying inflation. The transition density of price gap following a shock
going from xa at time ta to xb at time tb in the presence of time-varying inflation µ(t)
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without considering firm’s reinjection is given by the following proposition as

Proposition 2. The path integral transition density of price gap, Kµ(t)(xb, tb;xa, ta),
following a monetary shock in the presence of time-varying inflation µ(t) without con-
sidering firm’s reinjection, given generalized hazard function Λ(x, t) = κ

[
x(t) + 1

2κ
f(t)

]2
and cost volatility σ, is given by

Kµ(t)(xb, tb;xa, ta)

=

[ √
2κ

2πσ sinh
√
2κσ(tb − ta)

]1/2
e−

1
2σ2

∫ tb
ta

µ2(t)dte−
2µ(tb)

σ2 xbe−
1
4κ

∫ tb
ta

f2(t)dt

× e
−

√
2κ

2σ

[
(x2a+x2b) coshσ

√
2κ(tb−ta)−2xaxb

sinhσ
√
2κ(tb−ta)

]
e
−

√
2κxb

2σ sinhσ
√
2κ(tb−ta)

∫ tb
ta

[
−f(t)−µ′(t)

σ2

]
sinσ

√
2κ(t−ta)dt

× e
−

√
2κxa

2σ sinhσ
√
2κ(tb−ta)

∫ tb
ta

[
−f(t)−µ′(t)

σ2

]
sinσ

√
2κ(tb−t)dt

× e

√
2κ

2σ3κ sinhσ
√
2κ(tb−ta)

∫ tb
ta

∫ t
ta

[
−f(t)−µ′(t)

σ2

][
−f(s)−µ′(s)

σ2

]
sinσ

√
2κ(tb−t) sinσ

√
2κ(s−ta)dsdt

.

(32)

Proof. See Appendix.

We see that, from Proposition 2, the transition density of price gap in the presence
of time-varying inflation even without firm’s reinjection is no longer symmetric, that
is, Kµ(t)(x|y) ̸= Kµ(t)(y|x). We will see this is still the case when the firm’s reinjection
is considered. Later we will also see that there only exists discrete times T ∗ at which
the time-varying inflation converges to zero. If the monetary authority can precisely
target these times T ∗ as the times at which the inflation target is achieved, then the
whole economy in transition even with time-varying inflation will become symmetric
again in terms of the transition density of the state variable of the price gap. We
say achieving a symmetric economy in transition is what an effective and optimal
monetary policy should aim for. By achieving a symmetric economy in transition in
the presence of time-varying inflation effectively eliminates the negative impact that
the time-varying inflation brings to the economy, and as a result the whole economy
in transition even with time-varying inflation will behave more like an economy with
zero inflation in transition. Indeed, we will see later in the paper that if the monetary
authority can accurately set the discrete times T ∗ as the timing for the inflation target
(for instance, zero inflation target for simplicity) to be achieved, then the marginal
output impulse response in the presence of time-varying inflation will take the form
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of linear transformation of the marginal output impulse response with zero inflation,
which is exactly why in this case the sticky-price economy even with time-varying
inflation in transition following a monetary shock becomes symmetric again as in the
zero-inflation economy in transition.

Reinjections of firms and transition density with time-varying inflation.
Here, we discuss, in the presence of time-varying inflation, the transition density of
price gap with firm’s reinjection, Kµ(t)(y|x), is not equal to the transition density of
price gap without firm’s reinjection, Kµ(t)(y|x), and they are related by the following
proposition.

Proposition 3. Let the path integral transition density of price gap with firm’s rein-
jection in the presence of time-varying inflation be Kµ(t)(y|x) and the path integral
transition density of price gap without firm’s reinjection in the presence of time-
varying inflation be Kµ(t)(y|x), then Kµ(t)(y|x) ̸= Kµ(t)(y|x), and they are related
by

Kµ(t)(y|x) = Kµ(t)(y|x) + e−
1

2σ2

∫ t
0 µ2(r)dre−

1
4κ

∫ t
0 f2(r)dr

e
√
2κ

2σ3κ sinhσ
√
2κt

∫ t
0

∫ r
0

[
f(r)+

µ′(r)
σ2

][
f(s)+

µ′(s)
σ2

]
sinσ

√
2κ(t−r) sinσ

√
2κsdsdr

e
− 2µ(t)

σ2 y+
√
2κy

2σ sinhσ
√
2κt

∫ t
0

[
f(r)+

µ′(r)
σ2

]
sinσ

√
2κrdr

e
√
2κx

2σ sinhσ
√

2κt

∫ t
0

[
f(r)+

µ′(r)
σ2

]
sinσ

√
2κ(t−r)dr

×
∞∑
j=1

Λ(x∗(τ))ϕj(x
∗(τ))

∫ t

0

eλj(τ−t)dτϕj(x)ϕj(y)

(33)

Proof. See Appendix.

The analytical result obtained above implies that unlike the case of zero inflation,
the transition density of price gap of a sticky-price economy in the presence of time-
varying inflation with firm’s reinjection is distinct from the transition density of price
gap of a sticky-price economy in the presence of time-varying inflation without firm’s
reinjection. But the difference of the two becomes zero as time goes to infinity. In
other words, as long as the the time horizon is strictly less than infinity, the transition
density of price gap with firm’s reinjection will be different from the transition density
of price gap without firm’s reinjection in the case of time-varying inflation.
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6 The propagation of a monetary shock: an optimal

monetary policy

6.1 General behavior of the propagation

Following discussion above, the relationship between the marginal output impulse
response in the case of zero inflation Y0(t) and the marginal output impulse response
in the case of time-varying inflation with firm’s reinjection Yµ(t)(t) can be established
as in the next proposition.

Proposition 4. The marginal output impulse response function following a mone-
tary shock in the presence of time-varying inflation and an implied state- and time-
dependent generalized hazard function with firm’s reinjection can be rewritten as

Yµ(t)(t)

= e−
1

2σ2

∫ t
0 µ2(r)dre−

1
4κ

∫ t
0 f2(r)dr

e
√
2κ

2σ3κ sinhσ
√
2κt

∫ t
0

∫ r
0

[
f(r)+

µ′(r)
σ2

][
f(s)+

µ′(s)
σ2

]
sinσ

√
2κ(t−r) sinσ

√
2κsdsdr

∞∑
j=1

e−λjt

[∫ ∞

−∞
(−y)e

−
[
2µ(t)

σ2 −
√
2κ

2σ sinhσ
√

2κt

∫ t
0

[
f(r)+

µ′(r)
σ2

]
sinσ

√
2κrdr

]
y
ϕj(y)dy

]
×[∫ ∞

−∞
f ′(x)e

[ √
2κ

2σ sinhσ
√
2κt

∫ t
0

[
f(r)+

µ′(r)
σ2

]
sinσ

√
2κ(t−r)dr

]
x
ϕj(x)dx

]
+ e−

1
2σ2

∫ t
0 µ2(r)dre−

1
4κ

∫ t
0 f2(r)dr

e
√
2κ

2σ3κ sinhσ
√
2κt

∫ t
0

∫ r
0

[
f(r)+

µ′(r)
σ2

][
f(s)+

µ′(s)
σ2

]
sinσ

√
2κ(t−r) sinσ

√
2κsdsdr

∞∑
j=1

Λ∗ϕ∗
j

λj

(
1− e−λjt

)[∫ ∞

−∞
(−y)e

−
[
2µ(t)

σ2 −
√
2κ

2σ sinhσ
√
2κt

∫ t
0

[
f(r)+

µ′(r)
σ2

]
sinσ

√
2κrdr

]
y
ϕj(y)dy

]
×[∫ ∞

−∞
f ′(x)e

[ √
2κ

2σ sinhσ
√
2κt

∫ t
0

[
f(r)+

µ′(r)
σ2

]
sinσ

√
2κ(t−r)dr

]
x
ϕj(x)dx

]
,

(34)

so that, as a special case, the marginal output impulse response function in the case
of zero inflation written explicitly in terms of eigenvalue-eigenfunction decomposition
form is given by replacing µ(t) everywhere above in Yµ(t)(t) by 0 for all t, that is,

Y0(t) =
∞∑
j=1

e−λjt

[∫ ∞

−∞
(−y)ϕj(y)dy

][∫ ∞

−∞
f ′(x)ϕj(x)dx

]
, (35)
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where

Λ∗ = κ[x∗(τ)]2 =
1

4κ
f 2(τ),

ϕ∗
j =

1

π1/4(2j−1(j − 1)!)1/2

(
2κ

σ2

)1/8

Hj−1

(
−
(
2κ

σ2

)1/4
1

2κ
f(τ)

)
e−(

κ
2σ2 )

1/2 f2(τ)

4κ2 ,

λj = σ
√
2κ

(
j − 1

2

)
,

ϕj(x) =
1

π1/4(2j−1(j − 1)!)1/2

(
2κ

σ2

)1/8

Hj−1

((
2κ

σ2

)1/4

x

)
e−(

κ
2σ2 )

1/2
x2

,

and f ′(x) is first-order derivative of the stationary density of price gap.

6.2 Asymptotic behavior of the propagation

There is one specially important interesting aspect of the propagation of a monetary
shock, and that is we are particularly interested in how the marginal output impulse
response propagates following the monetary shock at the time t = T where T denotes
the time at which the time-varying inflation converges to zero, i.e., µ(T ) = 0. One
important question to ask is that, would the propagation of the marginal output im-
pulse response following a monetary shock in the presence of time-varying inflation,
Yµ(t)(t), at time t = T , instantly approach to the propagation of the marginal output
impulse response following a monetary shock in the case of zero inflation, Y0(t), at
time t = T ? Or, would they approach to each other asymptotically at time t = T as
T increases ? (i.e., would they converge to each other asymptotically as T increases
?) Or, they would never approach to each other at all even asymptotically. (i.e., they
would never converge to each other asymptotically even as T increases). We start to
explore such an interesting question by giving the following proposition. Basically,
Proposition 5 is about the following. Yµ(t)(T ) takes the linear transformation form
of Y0(T ) and hence they asymptotically approach to each other up to a linear trans-
formation if and only if T = T ∗ = nπ

σ
√
2κ

where n = 1, 2, 3, ..., σ is the cost volatility
and κ is the curvature of the generalized hazard function. Otherwise, or equivalently,
if T ̸= T ∗ = nπ

σ
√
2κ

, Yµ(t)(T ) and Y0(T ) would never approach to each other even
asymptotically.
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Proposition 5. Given cost volatility of the firm σ and the rate of price adjustment
Λ(x) in the case of zero inflation as a quadratic function of price gap x, Λ(x) =

κx2, the propagation of a monetary shock which is characterized by the marginal
output impulse response in a sticky-price economy with time-varying inflation is a
linear transformation, or linearly-transformed amplification, of the propagation of the
marginal output impulse response in the sticky-price economy with zero inflation only
at discrete times T ∗ = nπ

σ
√
2κ

at which the inflation converges to zero in the economy of
time-varying inflation, where n = 1, 2, 3, ..., i.e., Yµ(t)(T ∗) = A(T ∗)×Y0(T ∗)+B(T ∗),
where

Y0(T ∗) =
∞∑
j=1

e−λjT
∗
[∫ ∞

−∞
(−y)ϕj(y)dy

][∫ ∞

−∞
f ′(x)ϕj(x)dx

]
, (36)

which is the corresponding propagation of the marginal output impulse response in
the sticky-price economy with zero inflation at the discrete times T ∗ and A(T ∗) and
B(T ∗) are given by

A(T ∗) = e−
1

2σ2
T∗
2

∑∞
n=1 a

2
ne−

1
4κ

T∗
2

∑∞
n=1 b

2
n

× e
√
2κ

2σ3κ sinhσ
√

2κT∗
∫ T∗
0

∫ t
0

[
f(t)+

µ′(t)
σ2

][
f(s)+

µ′(s)
σ2

]
sinσ

√
2κ(T ∗−t) sinσ

√
2κsdsdt

,
(37)

B(T ∗) = e−
1

2σ2

∫ T∗
0 µ2(r)dre−

1
4κ

∫ T∗
0 f2(r)dr

× e
√
2κ

2σ3κ sinhσ
√

2κT∗
∫ T∗
0

∫ t
0

[
f(t)+

µ′(t)
σ2

][
f(s)+

µ′(s)
σ2

]
sinσ

√
2κ(T ∗−t) sinσ

√
2κsdsdt

×
∞∑
j=1

Λ∗ϕ∗
j

λj

(
1− e−λjT

∗)[∫ ∞

−∞
(−y)ϕj(y)dy

][∫ ∞

−∞
f ′(x)ϕj(x)dx

] (38)

where

λj = σ
√
2κ

(
j − 1

2

)
,

ϕj(x) =
1

π1/4(2j−1(j − 1)!)1/2

(
2κ

σ2

)1/8

Hj−1

((
2κ

σ2

)1/4

x

)
e−(

κ
2σ2 )

1/2
x2

,

f ′(x) is first-order derivative of the stationary density of price gap, and an, bn are the
Fourier coefficients, and Hj−1 is the Hermite polynomials of degree j − 1.

Proof. See Appendix.
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One important implication of Proposition 5 relies on its policy usefulness. As we
see that there only exists discrete times T ∗ = nπ/σ

√
2κ at which the time-varying

inflation converges to zero such that the propagation of marginal output impulse re-
sponse following a monetary shock in the presence of time-varying inflation converges
to the propagation of marginal output impulse response in the case of zero inflation
at discrete times T ∗ in the sense that Yµ(t)(T ∗) ∼ A(T ∗)Y0(T ∗) with finite A(T ∗).
For an effective monetary policy, it should make sure that the monetary policy can ef-
fectively drive the time-varying inflation to reach (zero) inflation target only at these
discrete times T ∗ = nπ/σ

√
2κ, where n = 1, 2, 3, ....

As already discussed before, there only exists discrete times T ∗ = nπ/σ
√
2κ with

positive integer n for the monetary authority to set as the exact timing for the (zero)
inflation target to be achieved by an optimal monetary policy, such that the whole
sticky-price economy even with time-varying inflation in transition following a mon-
etary shock from T ∗ and on behaves as if it were the transitional economy in the
case of zero inflation in the sense that the economy with time-varying inflation in
transition exhibits a symmetric property just as in the case of zero inflation and the
new steady state of the economy in such a case would coincides with the initial steady
state of the economy, which are both symmetric. The reason is because the marginal
output impulse response with time-varying inflation in such a case takes the form of
linear transformation of its counterpart in the case of zero inflation. In contrast, if the
monetary authority is unable to accurately set the discrete times T ∗ = nπ/σ

√
2κ with

positive integer n as the exact timing for the (zero) inflation target to be achieved,
but instead sets some other timing T ̸= T ∗ = nπ/σ

√
2κ as the times for the target,

the whole economy in transition from T and on would not exhibit the symmetric
property and the new steady state of the economy in terms of the distribution of the
price gap following the monetary shock would be asymmetric, which is distinct from
the symmetric initial steady state of the economy.

More intuitively, the reason why it is always optimal for monetary authority to
set times T ∗ = nπ/σ

√
2κ as the times at which the (zero) inflation target is achieved

is because the average speed of convergence of the marginal output impulse response
following a monetary shock in the presence of time-varying inflation from 0 to time
T ∗ = nπ/σ

√
2κ, limT ∗→∞ logYµ(t)(T ∗)/T ∗, is equal to that of the marginal output

impulse response following a monetary shock in the case of zero inflation from 0 to time
T ∗ = nπ/σ

√
2κ. Since the inflation converges to zero at times T = T ∗ = nπ/σ

√
2κ,
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i.e., µ(T ∗) = 0, it follows that the average speed of convergence of the marginal output
impulse response in the presence of time-varying inflation, Yµ(t)(t), will converge
to that of the marginal output impulse response in the case of zero inflation after
T ∗ = nπ/σ

√
2κ if and only if the average speed of convergence of the marginal

output impulse response following a monetary shock in the presence of time-varying
inflation from 0 to time T ∗ = nπ/σ

√
2κ, limT ∗→∞ logYµ(t)(T ∗)/T ∗, is equal to that

of the marginal output impulse response following a monetary shock in the case of
zero inflation from 0 to time T ∗ = nπ/σ

√
2κ.

We will see in the next section that whenever the inflation target is set to achieve
at T ̸= T ∗ = nπ/σ

√
2κ, the average speed of convergence of the marginal output

impulse response following a monetary shock in the presence of time-varying inflation
from 0 to time T ̸= T ∗ = nπ/σ

√
2κ, limT→∞ logYµ(t)(T )/T , is always faster than that

of the marginal output impulse response following a monetary shock in the case of zero
inflation from 0 to time T , which is not an effective monetary policy would like to see.
This is because a faster average speed of convergence in the presence of time-varying
inflation implies the response of the economy to the monetary shock during transition
in the presence of time-varying inflation with T ̸= T ∗ is more sensitive, making the
transitional state of the economy following a monetary shock more unstable.

However, it is always a difficult task for any monetary authority to accurately set
times that equal to T = T ∗ = nπ/σ

√
2κ at which the time-varying inflation could

be driven to zero by an effective monetary policy. Hence, in general, we would like
to consider how and to what extend the propagation of a monetary shock at times
T ̸= T ∗ = nπ/σ

√
2κ at which the time-varying inflation converges to zero in a sticky-

price economy with time-varying inflation differs from the propagation of a monetary
shock at times T = T ∗ = nπ/σ

√
2κ at which the time-varying inflation converges to

zero in the sticky-price economy with time-varying inflation. Section 7 of this paper
will be mainly about this particular issue. We show that this question can properly
be addressed based on the generalization of the path integral transition density of
the price gap in its relation to the eigenvalue-eigenfunction transition density of the
price gap in the presence of time-varying inflation using a path integral perturbation
method not just for the quadratic form of state- and time-dependent generalized
hazard function but also for any form of the state- and time-dependent generalized
hazard function.

We will see that in the context of µ(0) = µ(T ) = 0 (i.e., considering a time frame
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from 0 to finite T in which inflation is time-varying but equal to zero at two end points
t = 0 and t = T ), the monetary policy that results in T = T ∗ = nπ/σ

√
2κ with

positive integer n corresponds to the situation where the eigenvalue-eigenfunction
pair of the transition matrix of the economy at time 0 indexed by i, (λi, ϕi(x)),
shares the exactly same eigenvalue-eigenfunction pair of the transition matrix of the
economy at time T which is also indexed by i, (λi, ϕi(y)). By contrast, the monetary
policy that results in T ̸= T ∗ = nπ/σ

√
2κ with positive integer n corresponds to

the situation where the eigenvalue-eigenfunction pair of the transition matrix of the
economy at time 0 indexed by i, (λi, ϕi(x)), is distinctly different from the eigenvalue-
eigenfunction pair of the transition matrix of the economy at time T which is indexed
by j, (λj, ϕj(y)), where j ̸= i.

7 Generalization of path integral formulation and

eigenvalue-eigenfunction decomposition

This section focuses on how to relate path integral formulation of the transition
density of price gap to the spectral (eigenvalue-eigenfunction) decomposition of the
transition density of the price gap following a monetary shock. This section does
not specify the functional form of the Λ(x, t) as long as it is a function of both
state x and time t, so that the analysis in this section of the paper will be of more
importance to the wide range of macroeconomic topics. Specifically, we first introduce
the path integral formulation of time-dependent perturbation to generalize the path
integral formulation of transition density of price gap following a monetary shock
in the presence of time-varying inflation in its relation to the spectral (eigenvalue-
eigenfunction) decomposition formulation. Then, we use the analytical result of the
generalization to explore how and to what extend the propagation of a monetary
shock at times T ̸= T ∗ = nπ/σ

√
2κ at which the time-varying inflation converges to

zero in a sticky-price economy with time-varying inflation differs from the propagation
of a monetary shock at times T = T ∗ = nπ/σ

√
2κ at which the time-varying inflation

converges to zero in the sticky-price economy with time-varying inflation. We assume
that the time-varying inflation µ(t) is considered over a time frame [0, T ] where T < ∞
and restrict the time-varying inflation µ(t) to be zero only at both end points, that
is, µ(0) = µ(T ) = 0. We then study the propagation of the transition dynamics of a
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sticky-price economy at time T .

7.1 The generalization of eigenvalue-eigenfunction transition

density by path integral perturbation

The analytical process used for such an analysis is called "time-dependent perturba-
tion of Λ(x, t)". Through such an analytical process, we show that the path integral
transition density of the price gap, even in the presence of time-varying inflation with
an implied state- and time-dependent generalized hazard function Λ(x, t), can still be
expressed in terms of the generalized eigenvalue-eigenfunction form. We begin our
analysis with the following proposition.

Proposition 6. Suppose the state- and time-dependent generalized hazard function
in the presence of time-varying inflation, Λ(x, t), can be written as Λ(x) + λ(x, t),
i.e., Λ(x, t) = Λ(x) + λ(x, t), where Λ(x) is the state-dependent generalized haz-
ard function. For instance, in the presence of time-varying inflation, the implied
quadratic state- and time-dependent generalized hazard function Λ(x, t) can be ap-
proximated by the quadratic state-dependent generalized hazard function in the case
of zero inflation Λ(x) = κx2 and time integral of λ(x(t), t) over time interval [0, T ],
i.e.,

∫ T

0
λ(x(t), t)dt, is assumed to be small relative to the time integral of Λ(x)

over the time interval [0, T ], i.e.,
∫ T

0
Λ(x(t))dt. That is, here, it is assumed that∫ T

0
Λ(x(t))dt is large but

∫ T

0
λ(x(t), t)dt is small. Specifically, in our case of state-

and time-dependent generalized hazard function implied by a time-varying inflation,

Λ(x, t) = κ
[
x(t) + f(t)

2κ

]2
, we take the unperturbed generalized hazard function tak-

ing state-dependent-only quadratic form Λ(x) = κx2 and the perturbed component
λ(x, t) = x(t)f(t) + f 2(t)/4κ and further assume that κ

∫ T

0
x2(t)dt is large but∫ T

0
[x(t)f(t) + f 2(t)/4κ]dt is small. Then, the transition density of price gap in the

presence of time-varying inflation, Kµ(t)(y|x), can be rewritten in terms of the state-
dependent generalized hazard function Λ(x) as

Kµ(t)(y|x) = K0
Λ(x)(y|x) +K

(1)
Λ(x)(y|x) +K

(2)
Λ(x)(y|x) + · · · , (39)

where

K0
Λ(x)(y|x) =

∫ y

x

e−
1
σ2

∫ T
0 [

1
2
ż2+σ2Λ(z)]dτDz(τ), (40)
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K
(1)
Λ(x)(y|x) = −

∫ y

x

e−
1
σ2

∫ T
0 [

1
2
ż2+σ2Λ(z)]dτ

∫ T

0

Λ(z(s))dsDz(τ), (41)

K
(2)
Λ(x)(y|x) =

1

2

∫ y

x

e−
1
σ2

∫ T
0 [

1
2
ż2+σ2Λ(z)]dτ

∫ T

0

Λ(z(s), s)ds

∫ T

0

Λ(z(r), r)drDz(τ), (42)

...

Proof. See Appendix.

The proposition above implies that in the case of time-varying inflation with an
implied state- and time-dependent generalized hazard function Λ(x, t), we can de-
compose Λ(x, t) into two components, namely, state-dependent-only component Λ(x)
and state- and time-dependent component λ(x, t), implying that the state- and time-
dependent component λ(x, t) can be viewed as the perturbed component around the
unperturbed state-dependent but time-independent component Λ(x).

7.2 The propagation at t = T by generalized

eigenvalue-eigenfunction decomposition

In this section, we study how and to what extend the propagation of a monetary
shock at times T ̸= T ∗ = nπ/σ

√
2κ at which the time-varying inflation converges to

zero differs from the propagation of a monetary shock at times T = T ∗ = nπ/σ
√
2κ

at which the time-varying inflation converges to zero in the sticky-price economy with
time-varying inflation. The following proposition tells us the path integral transition
density of price gap implies its corresponding (generalized) eigenvalue-eigenfunction
form in the presence of time-varying inflation. Simply speaking, the following propo-
sition is about the equivalence between path integral transition density of price gap
and the (generalized) eigenvalue-eigenfunction transition density of the price gap in
the presence of the time-varying inflation.

Proposition 7. The propagation of the marginal output impulse response follow-
ing a monetary shock in the presence of time-varying inflation at time T at which
the time-varying inflation converges to zero or equivalently µ(T ) = 0, Yµ(t)(T ), can
be equivalently expressed in terms of generalized eigenvalue-eigenfunction transition
density

∑∞
j=1

∑∞
i=1 λji(T )ϕj(y)ϕi(x). That is,

Yµ(t)(T ) =
∞∑
j=1

∞∑
i=1

λji(T )

[∫ ∞

−∞
(−y)ϕj(y)dy

][∫ ∞

−∞
f ′(x)ϕi(x)dx

]
. (43)
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As a special case, if j = i, or equivalently, if T = T ∗ = nπ/σ
√
2κ with positive integer

n as implied by the optimal monetary policy, then the equivalence is reduced to

Yµ(t)(T ∗) =
∞∑
j=1

λjj(T
∗)

[∫ ∞

−∞
(−y)ϕj(y)dy

][∫ ∞

−∞
f ′(x)ϕj(x)dx

]
, (44)

where

λjj(T
∗) = e−λjT

∗
+ λ

(1)
jj (T

∗) + λ
(2)
jj (T

∗) + · · · ,

λ
(1)
jj (T

∗) = −
∫ T ∗

0

∫ ∞

−∞
ϕj(z)Λ(z, τ)ϕj(z)e

−λjT
∗
dzdτ

= −e−λjT
∗
∫ T ∗

0

Λjj(τ)dτ,

λ
(2)
jj (T

∗) =

∫ T ∗

0

[∫ τ

0

∞∑
k=1

e−λj(T
∗−τ)Λjk(τ)e

−λk(τ−s)Λki(s)e
−λisds

]
dτ,

λji(T ) = λ
(1)
ji (T ) + λ

(2)
ji (T ) + · · · ,

λ
(1)
ji (T ) = −

∫ T

0

∫ ∞

−∞
ϕj(z)Λ(z, τ)ϕi(z)e

−λj(T−τ)−λiτdzdτ

= −e−λjT

∫ T

0

Λji(τ)e
(λj−λi)τdτ,

λ
(2)
ji (T ) =

∫ T

0

[∫ τ

0

∞∑
k=1

e−λj(T−τ)Λjk(τ)e
−λk(τ−s)Λki(s)e

−λisds

]
dτ,

· · ·

and so forth, where Λjj(τ) is called the matrix element of generalized hazard function
Λ between states j and j and defined as

Λjj(τ) =

∫ ∞

−∞
ϕj(z)Λ(z, τ)ϕj(z)dz.

Similarly, Λjk, Λki, and Λji are defined as the matrix element of generalized hazard
function Λ between states k and j, between states i and k, and between states i and
j, respectively, as

Λjk(τ) =

∫ ∞

−∞
ϕj(z)Λ(z, τ)ϕk(z)dz,
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Λki(τ) =

∫ ∞

−∞
ϕk(z)Λ(z, τ)ϕi(z)dz,

Λji(τ) =

∫ ∞

−∞
ϕj(z)Λ(z, τ)ϕi(z)dz.

In the case of quadratic generalized hazard function, all the matrix elements of
generalized hazard function Λ are written as

Λjj = κ

∫ ∞

−∞
ϕj(z)z

2ϕj(z)dz,

Λjk = κ

∫ ∞

−∞
ϕj(z)z

2ϕk(z)dz,

Λki = κ

∫ ∞

−∞
ϕk(z)z

2ϕi(z)dz,

Λji = κ

∫ ∞

−∞
ϕj(z)z

2ϕi(z)dz.

Proof. See Appendix.

From Proposition 7, we see that the argument regarding the odd- versus even-
indexed terms in the case of zero inflation as discussed earlier in this paper is also
valid in the presence of time-varying inflation, simply because the transition density
of price gap even in the presence of time-varying inflation can be expressed in the form
of eigenvalue-eigenfunction decomposition. That is, the odd-indexed terms will also
vanish in the analytical impulse response of output with the presence of time-varying
inflation, thereby implying that the odd-indexed eigenvalues will also not exist in
the analytical expression of the impulse response function of output even with the
presence of time-varying inflation just as in the case of zero inflation.

Next, we can proceed to explicitly evaluate λji(T ) and λjj(T ) to fully develop the
equivalence. This paper will focus on the first-order approximation for the λji(T ) and
λjj(T ), i.e., we consider λjj(T ) = e−λjT +λ

(1)
jj (T ) and λji(T ) = δjie

−λiT +λ
(1)
ji (T ). The

fully developed version of the equivalence is summarized in the following proposition.

Proposition 8. The propagation of the marginal output impulse response following a
monetary shock in the presence of time-varying inflation at time T at which the time-
varying inflation converges to zero or µ(T ) = 0, Yµ(t)(T ) without firm’s reinjection,
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is expressed as

Yµ(t)(T ) =
∞∑
j=1

∞∑
i=1

[
κ

(∫ ∞

−∞
ϕj(z)z

2ϕi(z)dz

)
e−λjT − e−λiT

λj − λi

][∫ ∞

−∞
(−y)ϕj(y)dy

][∫ ∞

−∞
f ′(x)ϕi(x)dx

]
(45)

As a special case without firm’s reinjection, if j = i, or equivalently, if T = T ∗ =

nπ/σ
√
2κ with positive integer n as implied by the optimal monetary policy, the equiv-

alence is reduced to

Yµ(t)(T ∗) =
∞∑
j=1

[(
1− κT ∗

∫ ∞

−∞
ϕ2
j(z)z

2dz

)
e−λjT

∗
][∫ ∞

−∞
(−y)ϕj(y)dy

][∫ ∞

−∞
f ′(x)ϕj(x)dx

]
.

(46)

With firm’s reinjection, the corresponding propagation is given by

Yµ(t)(T )

=
∞∑
j=1

∞∑
i=1

[∫ ∞

−∞
(−y)ϕj(y)dy

][∫ ∞

−∞
f ′(x)ϕi(x)dx

][
−κ

∫ ∞

−∞
ϕj(z)z

2ϕi(z)dz

]
×
(
e−λiT − e−λjT

λj − λi

)
+

∞∑
j=1

∞∑
i=1

[∫ ∞

−∞
(−y)ϕj(y)dy

][∫ ∞

−∞
f ′(x)ϕi(x)dx

][
−κ

∫ ∞

−∞
ϕj(z)z

2ϕi(z)dz

]
×
[
Λ∗ϕ∗

i

λi

(
1− e−λjT

λj

− e−λiT − e−λjT

λj − λi

)]
+

∞∑
j=1

∞∑
i=1

[∫ ∞

−∞
(−y)ϕj(y)dy

][∫ ∞

−∞
f ′(x)ϕi(x)dx

][
−κ

∫ ∞

−∞
ϕj(z)z

2ϕi(z)dz

]
×
[
Λ∗ϕ∗

j

λj

(
1− e−λiT

λi

− e−λiT − e−λjT

λj − λi

)]
+

∞∑
j=1

∞∑
i=1

[∫ ∞

−∞
(−y)ϕj(y)dy

][∫ ∞

−∞
f ′(x)ϕi(x)dx

][
−κ

∫ ∞

−∞
ϕj(z)z

2ϕi(z)dz

]

×

[
(Λ∗)2ϕ∗

jϕ
∗
i

λjλi

(
T − 1− e−λiT

λi

− 1− e−λjT

λj

+
e−λiT − e−λjT

λj − λi

)]

(47)

As a special case with firm’s reinjection, if j = i, or equivalently, if T = T ∗ =

nπ/σ
√
2κ with positive integer n as implied by the optimal monetary policy, the equiv-
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alence is reduced to

Yµ(t)(T ∗)

=
∞∑
j=1

[∫ ∞

−∞
(−y)ϕj(y)dy

][∫ ∞

−∞
f ′(x)ϕj(x)dx

][
−κ

∫ ∞

−∞
ϕ2
j(z)z

2dz

]

×

e−λjT
∗
+

Λ∗ϕ∗
j

λj

(
1− e−λjT

∗)
−κ
∫∞
−∞ ϕ2

j(z)z
2dz

+ T ∗e−λjT
∗


+ 2

∞∑
j=1

[∫ ∞

−∞
(−y)ϕj(y)dy

][∫ ∞

−∞
f ′(x)ϕj(x)dx

][
−κ

∫ ∞

−∞
ϕ2
j(z)z

2dz

]
×
[
Λ∗ϕ∗

j

λj

(
1− e−λjT

∗

λj

− T ∗e−λjT
∗
)]

+
∞∑
j=1

[∫ ∞

−∞
(−y)ϕj(y)dy

][∫ ∞

−∞
f ′(x)ϕj(x)dx

][
−κ

∫ ∞

−∞
ϕ2
j(z)z

2dz

]

×
[
(Λ∗)2(ϕ∗

j)
2

(λj)2

(
T ∗ − 2

1− e−λjT
∗

λj

+ T ∗e−λjT
∗
)]

(48)

where

λj = σ
√
2κ

(
j − 1

2

)
,

ϕj(x) =
1

π1/4(2j−1(j − 1)!)1/2

(
2κ

σ2

)1/8

Hj−1

((
2κ

σ2

)1/4

x

)
e−(

κ
2σ2 )

1/2
x2

,

λi = σ
√
2κ

(
i− 1

2

)
,

ϕi(x) =
1

π1/4(2i−1(i− 1)!)1/2

(
2κ

σ2

)1/8

Hi−1

((
2κ

σ2

)1/4

x

)
e−(

κ
2σ2 )

1/2
x2

,

and f ′(x) is first-order derivative of the stationary density of price gap, Hj−1(·) and
Hi−1(·) are the Hermite polynomials of degree j − 1 and i − 1, respectively, where
i = 1, 2, 3, ..., and j = 1, 2, 3, ....

Finally, based on the analytical results obtained in Proposition 8 above, we con-
clude our discussion for the paper with an analytical result with regard to the three
important average speeds of convergence, so that we can easily see, assuming zero in-
flation is the long-run inflation target set by the monetary authority, which scenario
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is more consistent with the optimal timing for achieving (zero) inflation target by
an effective monetary policy and which scenario is less consistent with the optimal
timing for achieving (zero) inflation target. In the next proposition, we give aver-
age speed of convergence of marginal output impulse response following a monetary
shock in the presence of time-varying inflation from 0 to time T ̸= T ∗ = nπ/σ

√
2κ,

limT→∞ logYµ(t)(T )/T , average speed of convergence of marginal output impulse re-
sponse following a monetary shock in the presence of time-varying inflation from 0

to time T = T ∗ = nπ/σ
√
2κ, limT ∗→∞ logYµ(t)(T ∗)/T ∗, and average speed of conver-

gence of marginal output impulse response following a monetary shock in the case of
zero inflation from 0 to time T , limT→∞ logY0(T )/T .

Proposition 9. Assuming quadratic state- and time-dependent generalized hazard
function with curvature κ and the cost volatility σ, the average speed of convergence
of marginal output impulse response following a monetary shock in the presence of
time-varying inflation from 0 to time T ̸= T ∗ = nπ/σ

√
2κ, limT→∞ logYµ(t)(T )/T ,

is given by
lim
T→∞

logYµ(t)(T )/T = λ4 − λ2 = 2σ
√
2κ. (49)

The average speed of convergence of marginal output impulse response following a
monetary shock in the presence of time-varying inflation from 0 to time T = T ∗ =

nπ/σ
√
2κ, limT ∗→∞ logYµ(t)(T ∗)/T ∗, is given by

lim
T ∗→∞

logYµ(t)(T ∗)/T ∗ = λ2 =
3

2
σ
√
2κ. (50)

And average speed of convergence of marginal output impulse response following a
monetary shock in the case of zero inflation from 0 to time T , limT→∞ logY0(T )/T ,
is given by

lim
T→∞

logY0(T )/T = λ2 =
3

2
σ
√
2κ. (51)

It is not surprising that the average speed of convergence of marginal output im-
pulse response following a monetary shock in the presence of time-varying inflation
from 0 to time T = T ∗ = nπ/σ

√
2κ, limT ∗→∞ logYµ(t)(T ∗)/T ∗, coincides with the

average speed of convergence of marginal output impulse response following a mon-
etary shock in the case of zero inflation from 0 to time T , limT→∞ logY0(T )/T and
both of them are equal to λ2, due to the fact that the former one takes the lin-
ear transformation of the latter one, as already discussed earlier in this paper. The
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reason why the average speed of convergence of marginal output impulse response
following a monetary shock in the presence of time-varying inflation from 0 to time
T ̸= T ∗ = nπ/σ

√
2κ, limT→∞ logYµ(t)(T )/T is λ4 − λ2 which is greater than λ2 is

completely due to the analytical functional form of the Yµ(t)(T ) with T ̸= T ∗ as stated
in Proposition 12. Here, we see the average speed of convergence of marginal output
impulse response following a monetary shock in the presence of time-varying inflation
from 0 to time T ̸= T ∗ = nπ/σ

√
2κ is greater than that of marginal output impulse

response in the presence of time-varying inflation from 0 to time T ∗ = nπ/σ
√
2κ

and thus an optimal monetary policy should avoid setting T ̸= T ∗ = nπ/σ
√
2κ as

the times at which the inflation target is achieved but rather should wisely choose
T = T ∗ = nπ/σ

√
2κ as the optimal timing for achieving the long-run inflation target.

8 Conclusion

This paper studies macroeconomic dynamics in a sticky price setting using path in-
tegrals. We analytically explored the transition dynamics of the economy with time-
varying inflation in sticky- price setting. The technique used for our analysis, path
integral formulation, turns out to be the most important mathematical contribution
of this paper which provides us an ideal mathematical tool that enables us to explore
many unsolved challenges in sticky price framework analytically. This paper aims to
help lay out the theoretical foundations for the topic and therefore also aims to leave
all other practical considerations like quantitative analysis for a future work. Even
without any of such quantitative or empirical aspect of the analysis, we still view the
work as groundbreaking and transformative in a way that the theoretical foundation
itself and the optimal monetary policy analysis alongside introducing path integrals
into macroeconomics is important enough for this work to be an independent and
promising work that could potentially lead to more future explorations of macroeco-
nomic dynamics studies based on path integral formulation.
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