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A Appendix
.1 Proof of Proposition 2
Proof. Define L(#,x,t) = 1i® + 0?A(z, ). Then,
. _1-2 2.2 2 _Nl(t) a?f2 (t) 1,
L(:c,a:,t)—Zx + ko' — o [f(t) ?]x+T+§u (t)

and we have, by defining S[z(t)] = [ L(i, z, t)d,
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where we have used y(t,) = y(t,) = 0 and from Euler Lagrange equat on for L(# =
s+ ro?r?—o? [f() —)]x—ir S T L L2(1) to get B (t) = 2k02F(t [ }




Therefore, we get

Slz(t)] = S[z(t) +y(t)]
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Therefore, we finally get

That is, given the generalized hazard function with transitional inflation, the

corresponding kernel is given by

K(b,a) = exp (-% /: ,ﬂ(t)dt) exp (gxb) exp (—i /tt f2(t)dt)

<o (~50001) [ e (-~ siucen ) Dute)
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s = [ (5770 + no0) )

First, we can compute foo exp (—%S [y(t)])Dy(t) using the Fourier series method,

and it turns out

/00 exp (_$S[y(t)])1?y(t) = /00 exp <_% /: (%yz(t) " mzyz(t)) dt) Pt
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To calculate foo exp (—i Y (LgR(t) + HO'ZyQ(t>)dt> Dy(t), we first note that the

a2 Jt,

path y(t) has to meet the following requirement: y(t, = 0) = y(t, = T') = 0, and thus

we can write y(t) using Fourier series expansion as

y(t) = nf:lan sin (”T“) (1)

Next, by direct plugging in and assuming that the time 7" is divided into discrete



steps of length €, our target of equation can be rewritten as
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where we have applied Euler formula to the derivation from the second-to-last line to
the last line.
F(T) can be written in the form
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We consider the case in which v2x0 = 0, since we already know from the previous
derivations about the equivalence of path integral and KFE formulations that F/(T') =
(ﬁ)l/ ? when v/2ko = 0, which is just the inverse of the normalizing factor A. On

the other hand, we also have (by utilizing L’Hopital’s rule),
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Therefore, our desired integral F'(T) is equal to
~1/2
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where T = t, — t,.

Hence, the kernel can be rewritten as
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Next, we compute
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Since the least-action path z(t) follows Euler-Lagrange equation, it follows that
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or equivalently,
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which is an inhomogeneous linear second-order ODE whose solution can be written

as

Z(t) = Asinh {oV2k(t — t,)} + B cosh {oV2k(t, — )}
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Given the solution of Z(t), we can proceed to compute

S = /: (%f?(t) + ko?B(t) — o [ (1) - ’“‘/(f)} yz-(t)> dt
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by simplification first and then direct substitution as follows.
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Hence, it follows from the fact z, = z, and z, = x;, that S, can be written as
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The kernel is thus calculated as
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.2 Proof of Proposition 3

Proof. We first write K*®)(y|z) in terms of K°(y|z) as

RO (ylz) = ¢ 527 17 Ohrgm 5 120

/
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where we can rewrite K°(y|x) in terms of the eigenvalue-eigenfunction decomposed

form as
K°y|z) = Ze Mt (x) i (y) (.11)

where \; and ¢;(-) are the eigenvalues and corresponding eigenfunctions, respectively.

As a result, K*®(y|z) can be rewritten as
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where K°(yla) = S5, e, () (y) solves
KO (yla) = (02 /2)02K° (ylr) — A(y) K°(yl). (13)

To obtain our desired transition density of price gap in the presence of time-varying

inflation with firm’s reinjection, X*® (y|x), we just need to replace
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in the expression of K*®(y|z) by the solution Q°(y|x) which solves

0, Q" (ylr) = (07/2)0;Q(ylz) — Ay) Q" (ylz) + AY)dy- () (9)- (-14)

Given Qf(z|z) = ¢;(x) for a same reason as in the case of zero inflation, the

solution Q°(y|z) takes the form
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and thus our desired transition density of price gap in the presence of time-varying

inflation with firm’s reinjection, X*® (y|z), is written as
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.3 Proof of Proposition 5

Proof. Assuming that the time horizon used in the marginal output impulse response
is from t = 0 to t = T, where T' can be infinity or strictly less than infinity. That
is, t € [0,T], where T' € R U {0,00}. It is also assumed that the inflation pu(t) is
zero initially at time ¢t = 0, i.e., u(0) = 0. To summarize, p(0) = p(7") = 0, which
also implies f(0) = f(T) = 0. Therefore, the functions u(t) and f(t) over the time
horizon ¢ € [0,T] can be written, without loss of generality, in terms of Fourier series

as a function of orthogonal basis {sin (””t) 1} as
- t
=Y a,sin <%) (.18)
n=1
- t
- Z by sin (n%) (.19)

Therefore, fo t)dt and fo f2(t)dt in the expression of Y*®)(¢) can be written
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in terms of Fourier coefficients as

T T 00
| i =53 (:20)
n=1

/O F2()dt = gz;bi (21)

Furthermore, the time derivative of u(t), a(t) (i-e., ¢/(t)), can also be written in

terms of Fourier series as

a(t) = %inan cos <"Tm) (.22)

Consequently, the integrals involving p(t) and f(t) in Y*®(t) can be expressed in

terms of Fourier series or Fourier coeflicients as follows:
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which is equal to zero when
=
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n=123,..
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Moreover,
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nm
T = (n=1,2,3,..). ,
G ( ) (.26)
m

.4 Proof of Proposition 6

Proof. We will conduct our analysis by two steps. First, we formulate the time-
dependent perturbation of the implied state- and time-dependent generalized hazard
function A(z,t) and show that the path integral formulated transition density can
be equivalently rewritten in terms of the infinite sum of the product of A;;(7") which
represents the transition element and the eigenfunctions ¢;(y) and ¢;(z) with respect
to both j and ¢, where \j;(7) denotes the transition probability of price gap going
from state ¢ at time 0 to state 5 at time 7T". That is, we aim to show the path integral
formulated transition density of price gap from x at time 0 to y at time 7" following a
monetary shock in the presence of time-varying inflation and the implied state- and

time-dependent generalized hazard function, K*®(y|z), can be written as

KO (y|z) = ZZAJZ di(z). (-27)

7j=1 =1

In the second step, we aim to show that A;;(T) for j =1,2,3,...,and i = 1,2,3, ...,

12



can be written as
Nii(T) = 85e™ 4 XUT) + AUT) + - (28)

where §;; = 1 whenever j = ¢ and J;; = 0 whenever j # i. For each )\glf) (T"), where
k € {1,2,3,...}, we can calculate it analytically. Consequently, the path integral
formulated transition density K*®(y|z) not only in the case of zero inflation but
also in the presence of time-varying inflation can be equivalently written in terms of
eigenvalue-eigenfunction decomposition as in equation (83), where ¢;(y) and ¢;(z)
are the eigenfunctions in the case of zero inflation. Overall, we aim to show that the

expression

_ 1 2
Uyl =D [a5e T AT AP D)+ [ )ante)  (29)
7j=1 =1
is legitimate and each component of it is analytically calculable.
Given the transition density of price gap following a monetary shock from z at
time 0 to y at time T in the presence of time-varying inflation and an implied state-
and time-dependent generalized hazard function A(x,t) by path integral formulation

written as

Y 1 1.2 2
(t)(y|x) _ / e_ﬁfoT[ﬁz ()40 A(z,T)]alTZ)Z(T)7 (30)
and a Taylor expansion of e~ Jo Ay g
- T 1 T 2
e Jo Mamdr 1 / Az, 7)dT + = o) [ / A(Z,T)d7:| +oe (-31)
0 0
K" (y|z) can be rewritten as
Dyla) = KO(yle) + KO (ylz) + K@ (ylz) + -, (:32)
where
Yy 1 T 1.2
KO(y|z) = / ¢ I Fdrp () (.33)
1 Y _ 1 fT 124 T
KO (y|z) = —/ e~ Jo 32 / A(2(s), s)dsDz(r) (.34)
x 0
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4 1T 12 T T
K@ (y|z) = %/ e o2 Jo 27 dT/ A(z(s),s)ds/ A(z(r),r)drDz(T) (.35)
T 0 0
and so forth. n

.5 Proof of Proposition 7

Proof. By path integral formulation in its relation to ordinary integral, we can rewrite
KW(y|z) as (note that the subscript A(z) will be suppressed)

KO (ylr) = / /_OOK°<y|z>A<z,T>K0<zlx>dsz (:36)

and apply similar logic to K® (y|z).
Now, by plugging all the terms so far obtained in equation (92) and note that
KO%ylz) = 3202, ¢i(x)di(y)e 7 which is the transition density of price gap with zero

inflation, we can rewrite K" (y|z) as

Ku(t (y|lz) = Z i () s ( o MT

_ZZ/O _Oo ¢j(y)¢j(z)e*>\g(T (Z T)¢z( )(bz( ) NT dd (37)
+ ..

It is thus clear that K*®(y|x) in equation (97) can be written in the form of

spectral decomposition as

3/|37 ZZ)\JZ di(x)

=1

as desired, where

Ni(T) = 85T 4 A1) +AD(T) + -

AP (r // 0:(2)A(z, 7) i (2)e TN gy
= —e / Aﬁ(T)e()‘ )\)TdT

0

(.38)
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T T X
A§-?)<T):/ [/ Y eI () M T N(s)eMods | dr (.39)
0 170 k=1

and so forth, where Aj;(7) is called the matrix element of A between states i and j

and defined as

/ 65 (2)A (2, 7)o (2)dz. (40)

Hence, we have obtained our desired result of expressing the path integral for-
mulated transition density of price gap K*® (y|z) with time-varying inflation and an
implied state- and time-dependent generalized hazard function in terms of the spec-
tral (eigenvalue-eigenfunction) decomposition. Now, to see how the generalization
applies to a specific case, we take the unperturbed zero inflation with an implied
time-independent quadratic generalized hazard function A(z) = k2? and perturb it,
so that we get the first-order approximation of the transition density of price gap fol-
lowing a monetary shock in the presence of time-varying inflation x(t) with an implied
state- and time-dependent quadratic generalized hazard function A(z,t), K*®W (y|x),

written in terms of spectral (eigenvalue-eigenfunction) decomposition as

E*O0 (yla) = ZZA]Z ¢i(z)

7j=1 =1
- . (.41)
— Z Z |:—e_)‘jT/ Ajz' (T)G(Aj_)\i)TdT:| ¢j (y)¢l<x)
j=1 i=1 0
where
2 = Um(i B %) (.42)
and

1 21\ /8 26\ \ ()
dilw) = T2 (5 — 1)!)1/2 (;) Hi ((;) 3‘3)6 (z , (-43)

where i = 1,23, ... and H;_4(-) is the Hermite polynomial of degree i — 1, and

M= [ o0
= ﬁ/_oo 0i(2)2*¢i(2)dz
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Now, we can corresponding figure out the time-dependent perturbation solutions
to the version with firm’s reinjection by simply replacing e™%7 with a;(7) and e™"

with a;(7) as
Aji(T) = bjiai(T') + )é?(T) - )\g) (T)+ -
A%-)(T) = _/0 /_OO (ﬁj(Z)A(Z,T)(bi(z)aj(T _ T>aq;<7')dzd7'

__ / Aji(r)ay (T — 7)ay(r)dr

0

k=1
where
t
a;(t) = e M+ oy / N, (.47)
0
¢
a;(t) = e N 4 A"‘(ﬁf/ MV, (.48)
0
t
ap(t) = e Mt 4 A*gzﬁ};/ M0 dr (.49)
0
]
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